虚心学习... ...
级别: 荣誉元老

UID: 2235
精华: 4
发帖: 1336
威望: 132 点
积分转换
愚愚币: 2173 YYB
在线充值
贡献值: 0 点
在线时间: 6282(小时)
注册时间: 2006-07-13
最后登录: 2018-07-30
楼主  发表于: 2012-11-17 15:18

 高性能锂离子电池电极材料研究方面取得系列进展

为了满足消费电子、电动汽车、储能电源等应用领域突飞猛进的发展,急需进一步提高锂离子电池的能量密度、功率密度、循环寿命和安全性。为此,高性能电极材料的开发是关键,也是研究热点和难点。

在国家自然科学基金委、科技部和中国科学院的支持下,中科院化学所分子纳米结构与纳米技术院重点实验室的研究人员,利用“纳米碳三维导电网络”进行理性电极材料结构设计,大幅提高了多种纳米结构正、负极材料的电化学性能,取得系列进展(J. Am. Chem. Soc. 2012, 134, 2512; Energy. Environ. Sci.2012,5,5221;Adv. Energy Mater.2012,2,1086;Chem. Commun.2012,48,2198;Chem.Commun.2012,48,10663;J. Mater. Chem.2012,22, 17456;ACS Appl. Mater.Interfaces,2012,4,2824;ACS Appl. Mater. Interfaces,2012,4,4858;Phys. Chem. Chem. Phys.2012,14,2934)。并应美国化学会的Accounts of Chemical Research期刊邀请,撰写了题为Nanocarbon Networks for Advanced Rechargeable Lithium Batteries的综述文章,系统介绍了纳米碳三维导电网络结构电极材料在高性能锂离子电池及未来高比能金属锂二次电池(锂-硫电池和锂-空气电池等)中的应用和发展前景(Acc. Chem. Res. 2012, 45, 1759)。

该课题组研究人员长期致力于高效、稳定的高容量、高倍率锂离子电池电极材料研究(Adv.Mater.2008,20,2878;Adv.Mater.2008,20,1160;Adv. Mater.2009,21,2710;Adv.Mater.2010,22,4591;Adv. Mater.2011,23,4415;Energy. Environ. Sci.,2011,4,1634)。通过系统研究,他们发现各种纳米碳结构单元(纳米碳颗粒、纳米碳管、石墨烯、纳米多孔碳等)形成的具有纳米通道的三维导电网络,不但可以有效分散活性电极材料纳米颗粒、防止其团聚,还可以高速输送锂离子和电子到每个活性纳米颗粒表面,从而真正发挥纳米结构电极材料的动力学优势,开发出****************具高容量和高倍率性能的锂离子电池电极材料(图1)。

在这一思想指导下,研究人员在利用石墨烯构筑三维导电网络结构电极材料方面取得系列进展,开发了多种高效组装方法,构筑出多种稳定的高性能纳微复合结构正、负极材料。1.他们发现,利用NMP为分散剂可通过简单共混实现石墨烯与三元正极材料LiNi1/3Mn1/3Co1/3 O2(LMNC)纳米颗粒或有机自由基聚合物(PTMA)的均匀复合(图2 (a)),从而显著提高材料的动力学性能(Phys. Chem. Chem. Phys.,2012, 14, 2934;Energy. Environ. Sci., 2012, 5, 5221)。2.在高容量合金负极方面,开发出一种通过结合冷冻干燥与热还原法将硅纳米颗粒嵌入到石墨烯之间的制备方法(Chem. Commun., 2012, 48, 2198)。他们还巧妙利用Si纳米颗粒和氧化石墨烯的表面带负电的性质,以带正电荷的聚合物电解质为媒介,发展出一种静电力层层组装技术用于制备Si/石墨烯纳米复合负极材料的方法。利用该法可实现Si纳米颗粒的高效石墨烯包裹,从而大幅提高其循环性能和倍率性能(Adv. Energy Mater.,2012, 2, 1086)。3.最近,他们还提出双重保护设计理念用于高容量合金负极材料(图2 (b)),即联合利用核壳结构的纳米碳壳和石墨烯三维网络来解决高容量电极材料的体积膨胀、表界面和动力学问题,研制出具有优异循环性能和倍率性能的Ge@C/石墨烯纳米结构复合负极材料。(J. Am. Chem. Soc., 2012, 134, 2512)。

本帖最近评分记录:
  • 愚愚币:+5(Bioartist) 谢谢分享
  • 如果不能改变结果,那就完善过程。
    分享:

    愚愚学园属于纯学术、非经营性专业网站,无任何商业性质,大家出于学习和科研目的进行交流讨论。

    如有涉侵犯著作权人的版权等信息,请及时来信告知,我们将立刻从网站上删除,并向所有持版权者致最深歉意,谢谢。