Contents
V
Hydrogen Bonding in Organic Synthesis. Edited by Petri M. Pihko
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
IN: 978-3-527-31895-7
Preface IX
List of Contributors XI
1 Introduction 1
Petri Pihko
1.1 Introduction 1
1.2 Hydrogen Bonding in Organic Synthesis 3
References 4
2 Hydrogen-Bond Catalysis or Brønsted-Acid Catalysis? General
Considerations 5
Takahiko Akiyama
2.1 Introduction 5
2.2 What is the Hydrogen Bond? 6
2.3 Hydrogen-Bond Catalysis or Brønsted-Acid Catalysis 7
2.4 Brønsted-Acid Catalysis 9
2.5 Hydrogen-Bond Catalysis 11
References 13
3 Computational Studies of Organocatalytic Processes Based on
Hydrogen Bonding 15
Albrecht Berkessel and Kerstin Etzenbach-Effers
3.1 Introduction 15
3.1.1 Catalytic Functions of Hydrogen Bonds 18
3.2 Dynamic Kinetic Resolution (DKR) of Azlactones–Thioureas Can Act as
Oxyanion Holes Comparable to Serine Hydrolases 19
3.2.1 The Calculated Reaction Path of the Alcoholytic Ring Opening of
Azlactones 19
3.2.2 How Hydrogen Bonds Determine the Enantioselectivity of the
Alcoholytic Azlactone Opening 23
3.3 On the Bifunctionality of Chiral Thiourea–Tert-Amine-Based
Organocatalysts: Competing Routes to C–C Bond Formation in a
Michael Addition 25
VI Contents
3.4 Dramatic Acceleration of Olefi n Epoxidation in Fluorinated Alcohols:
Activation of Hydrogen Peroxide by Multiple Hydrogen Bond
Networks 29
3.4.1 Hydrogen Bond Donor Features of HFIP 30
3.4.2 The Catalytic Activity of HFIP in the Epoxidation Reaction 30
3.5 TADDOL-Promoted Enantioselective Hetero-Diels–Alder Reaction of
Danishefsky’s Diene with Benzaldehyde – Another Example for Catalysis
by Cooperative Hydrogen Bonding 37
3.6 Epilog 40
References 41
4 Oxyanion Holes and Their Mimics 43
Petri Pihko, Sanna Rapakko, and Rik K. Wierenga
4.1 Introduction 43
4.1.1 What are Oxyanion Holes? 44
4.1.2 Contributions of Oxyanion Holes to Catalysis 44
4.1.3 Properties of Hydrogen Bonds of Oxyanion Holes 47
4.2 A More Detailed Description of the Two Classes of Oxyanion Holes in
Enzymes 49
4.2.1 A Historical Perspective 49
4.2.2 Oxyanion Holes with Tetrahedral Intermediates 52
4.2.3 Oxyanion Holes with Enolate Intermediates 56
4.2.3.1 Examples of Enolate Oxyanion Holes 58
4.3 Oxyanion Hole Mimics 61
4.3.1 Mimics of Enzymatic Oxyanion Holes and Similar Systems 61
4.3.2 Utilization of Oxyanion Holes in Enzymes for Other Reactions 64
4.4 Concluding Remarks 67
Acknowledgments 67
References 67
5 Brønsted Acids, H-Bond Donors, and Combined Acid Systems in
Asymmetric Catalysis 73
Hisashi Yamamoto and Joshua N. Payette
5.1 Introduction 73
5.2 Brønsted Acid (Phosphoric Acid and Derivatives) 75
5.2.1 Binapthylphosphoric Acids 75
5.2.1.1 Mannich Reaction 75
5.2.1.2 Hydrophosphonylation 78
5.2.1.3 Friedel–Crafts 79
5.2.1.4 Diels–Alder 83
5.2.1.5 Miscellaneous Reactions 85
5.2.1.6 Nonimine Electrophiles 89
5.2.1.7 Transfer Hydrogenation 89
5.2.2 Nonbinol-Based Phosphoric Acids 91
5.2.3 N-Trifl yl Phosphoramide 95
VII
5.2.4 Asymmetric Counteranion-Directed Catalysis 98
5.3 N–H Hydrogen Bond Catalysts 99
5.3.1 Guanidine Organic Base 99
5.3.2 Ammonium Salt Catalysis 106
5.3.3 Chiral Tetraaminophosphonium Salt 109
5.4 Combined Acid Catalysis 109
5.4.1 Brønsted-Acid-Assisted Brønsted Acid Catalysis 110
5.4.1.1 Diol Activation of Carbonyl Electrophiles 111
5.4.1.2 Diol Activation of Other Electrophiles 116
5.4.1.3 Miscellaneous BBA and Related Systems 120
5.4.2 Lewis-Acid-Assisted Brønsted Acid Catalysis 122
5.4.3 Brønsted-Acid-Assisted Lewis Acid Catalysis (Cationic
Oxazaborolidine) 126
5.4.3.1 Diels–Alder Reactions 126
5.4.3.2 Miscellaneous Reactions 132
References 136
6 (Thio)urea Organocatalysts 141
Mike Kotke and Peter R. Schreiner
6.1 Introduction and Background 141
6.2 Synthetic Applications of Hydrogen-Bonding (Thio)urea
Organocatalysts 149
6.2.1 Nonstereoselective (Thio)urea Organocatalysts 149
6.2.1.1 Privileged Hydrogen-Bonding N,N′-bis-
[3,5-(Trifl uoromethyl)phenyl]thiourea 149
6.2.1.2 Miscellaneous Nonstereoselective (Thio)urea Organocatalysts 174
6.2.2 Stereoselective (Thio)urea Organocatalysts 185
6.2.2.1 (Thio)ureas Derived From Trans-1,2-Diaminocyclohexane and Related
Chiral Primary Diamines 185
6.2.2.2 (Thio)ureas Derived from Cinchona Alkaloids 253
6.2.2.3 (Thio)urea Catalysts Derived from Chiral Amino Alcohols 288
6.2.2.4 Binaphthyl-Based (Thio)urea Derivatives 296
6.2.2.5 Guanidine-Based Thiourea Derivatives 307
6.2.2.6 Saccharide-Based (Thio)urea Derivatives 315
6.2.2.7 Miscellaneous Stereoselective (Thio)urea Derivatives 324
6.3 Summary and Outlook 330
Acknowledgment 332
Abbreviations and Acronyms 333
References 336
Appendix: Structure Index 345
7 Highlights of Hydrogen Bonding in Total Synthesis 353
Mitsuru Shoji and Yujiro Hayashi
7.1 Introduction 353
7.2 Intramolecular Hydrogen Bonding in Total Syntheses 353
VIII Contents
7.2.1 Thermodynamic Control of Stereochemistry 353
7.2.1.1 Pinnatoxin A 353
7.2.1.2 Azaspiracid-1 355
7.2.2 Kinetic Control Stereochemistry 355
7.2.2.1 Pancratistatin 355
7.2.2.2 Tunicamycins 357
7.2.2.3 Callystatin 358
7.2.2.4 Resorcylides 359
7.2.2.5 Strychnofoline 361
7.2.2.6 Asialo GM1 361
7.2.3 Activation/Deactivation of Reactions 362
7.2.3.1 Rishirilide B 362
7.2.3.2 2-Desoxystemodione 363
7.2.3.3 Leucascandrolide A 363
7.2.3.4 Azaspirene 364
7.3 Intermolecular Hydrogen Bondings in Total Syntheses 365
7.3.1 Henbest Epoxidation 365
7.3.2 Epoxyquinols 366
7.3.3 Epoxide-Opening Cascades 367
7.4 Conclusions 369
References 369
Index 373
本部分内容设定了隐藏,需要回复后才能看到