愚愚学园
www.SciFans.net温馨提示:
在生物体系中进行的生物相容的成键与断键反应有助于在分子水平研究生物体系。近年来可见光催化领域的研究发现可见光引发的自由基反应具有优秀的化学选择性,可在温和条件下与生物大分子相容,从而提供了发展生物相容反应的新思路。中国科学院上海有机化学研究所生命有机化学国家重点实验室的陈以昀课题组致力于发展新的可见光引发的生物相容反应,发现了可见光引发的基于环状高价碘的脱硼炔基化,烯基化和脱羧炔酮化反应,以及基于酞酰亚胺的脱羧炔基化和烯丙基化反应与生物大分子相容,并且不影响蛋白酶的生物活性。惰性键的选择性官能化可用于复杂分子的后期修饰以及化学生物学研究,然而该类反应在温和条件下尤其是生物相容条件下十分困难,可见光引发的自由基反应提供了解决此问题的新思路。
烷氧自由基是化学与生物学研究中重要的活性中间体,可用于机理研究及化学转化过程。传统产生烷氧自由基的条件为加热、AIBN/Bu3SnH、紫外光照射或强氧化剂等,虽然在有机合成中得到广泛应用,但这些较为剧烈的反应条件对许多敏感的化学官能团不****************容,进而限制了烷氧自由基的应用。烷氧自由基氢迁移反应可以使特定位置的惰性碳氢键发生选择性断裂,从而实现区域与化学选择性的碳氢官能化反应。然而烷氧自由基发生氢迁移反应后主要生成氢化产物、氧化环化产物或碳杂键产物,无法高效地进行分子间的碳碳成键反应。陈以昀课题组首次报道了烷氧自由基在温和的可见光催化条件下产生,进而实现了高选择性的碳氢烯丙基化及烯基化反应(Angew. Chem., Int. Ed. 2016, 55, 1872-1875)。该反应使用稳定的N-烷氧酞酰亚胺作为烷氧自由基前体,适用于活化及非活化C(sp3)-H碳氢键的官能化。由于具有优秀的区域和化学选择性,并且对杂环及炔烃等官能团具有很好的****************容性,该反应可以高选择性地进行复杂分子胆固醇的克级别后期修饰。同时该反应在水相中也可以顺利进行,为进一步发展生物相容反应提供了有利条件。
醇是理想的烷氧自由基前体,然而由醇通过均裂的方法生成烷氧自由基在热力学上需要较高的能量,在合成上比较困难,目前通常在过渡金属活化和较强的氧化条件下将醇氧化产生烷氧自由基。烷氧自由基导向的断裂可以选择性地实现惰性C(sp3)-C(sp3)键切断,进而产生酮及烷基自由基。然而目前烷氧自由基导向的断裂主要适用于张力环醇的研究,线性醇的碳碳键切断十分困难。陈以昀课题组首次报道了通过环状高价碘对醇的活化,实现了醇在可见光引发的温和条件下氧化产生烷氧自由基(J. Am. Chem. Soc. 2016, 128, 1514-1517)。该方法可以实现张力环醇和线性醇的碳碳键切断及炔基化和烯基化反应,具有优秀的区域和化学选择性,可以应用于复杂分子石胆酸及胆固醇的后期修饰。
上述研究工作得到国家重大科学研究计划、国家自然科学基金委面上项目、国家千人计划(青年项目)、生命有机化学国家重点实验室及中国科学院的资助。(来源:中国科学院上海有机化学研究所)
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的来源,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。