级别: 院长

UID: 69801
精华: 1
发帖: 3205
威望: 30 点
积分转换
愚愚币: 4391 YYB
在线充值
贡献值: 0 点
在线时间: 6701(小时)
注册时间: 2009-05-28
最后登录: 2017-09-13
楼主  发表于: 2011-05-21 08:31

 Crystallization: Stunning Structures Spring From Humble Table Salt

The spectacular spherulite seen in this colorized scanning electron micrograph is none other than table salt, or sodium chloride. The structure is something of a departure for NaCl, which almost always forms cubic crystals. This new ability to grow salts in unusual shapes could help researchers figure out how to improve control of the crystallization of water-soluble compounds.

Researchers led by Zhongping Zhang and Suhua Wang, of the Chinese Academy of Sciences’ Institute of Intelligent Machines discovered they could coax NaCl and its chemical cousin KCl into the surprising structures when they grew the crystals at the interface of metastable water micro­droplets and an organic solution of cyclohexane and acetone (Angew. Chem. Int. Ed., DOI: 10.1002/anie.201101704).

Each hollow sphere is composed of dozens of single crystals shaped like hoppers, or square funnels. The spherulite pictured here is made up of crystals 10 μm across.

Cyclohexane appears to play a critical role in the crystallization because only cubic crystals form when it is absent from the solution. Zhang, Wang, and colleagues think that cyclohexane stabilizes the water microdroplets by reducing diffusion of acetone into the water. Once the acetone does diffuse into the water, the salt solution becomes supersaturated and crystallization begins. But cyclohexane outside the droplets curtails crystal growth. As a result, the hopper-shaped crystals form, arranged in a hollow microsphere.

分享:

愚愚学园属于纯学术、非经营性专业网站,无任何商业性质,大家出于学习和科研目的进行交流讨论。

如有涉侵犯著作权人的版权等信息,请及时来信告知,我们将立刻从网站上删除,并向所有持版权者致最深歉意,谢谢。